
Explaining Completions Produced
by Embeddings of Knowledge Graphs

Andrey Ruschel(B), Arthur Colombini Gusmão, Gustavo Padilha Polleti,
and Fabio Gagliardi Cozman

Universidade de São Paulo, São Paulo, SP, Brazil
{andrey.ruschel,fgcozman}@usp.br

Abstract. Advanced question answering typically employs large-scale
knowledge bases such as DBpedia or Freebase, and are often based on
mappings from entities to real-valued vectors. These mappings, called
embeddings, are accurate but very hard to explain to a human sub-
ject. Although interpretability has become a central concern in machine
learning, the literature so far has focused on non-relational classifiers
(such as deep neural networks); embeddings, however, require a whole
range of different approaches. In this paper, we describe a combination
of symbolic and quantitative processes that explain, using sequences of
predicates, completions generated by embeddings.

Keywords: Knowledge graph · Knowledge base · Explainable AI ·
Embedding · Interpretability

1 Introduction

Query answering systems and chatbots have benefited from symbolic facts stored
in knowledge graphs (KGs) such as NELL [16], YAGO [22], Freebase [2]. Even
though KGs contain many facts, typically stored as triples “subject, relationship,
object”, KGs are far from complete, and a broad range of completion techniques
have emerged recently. These techniques often resort to embeddings that turn the
symbolic data into quantitative vectors, modeling relations between entities by
numeric operations over vectors [19]. Completion of a KG then relies on deciding
whether a particular triple is predicted through these numeric operations [25].

While embeddings usually offer the most accurate way to predict relation-
ships between entities, they are rather hard to be interpreted by human users.
Consider an example that provides background on what it means to “interpret
an embedding”. Take, for instance, a chatbot answering the question “Is Paris

The work has been supported by Itaú Unibanco S.A. through the Itaú Scholarship
Program (first and third authors are recipients). The last author is partially supported
by CNPq grant 312180/2018-7. The work has also been supported by FAPESP grant
2016/18841-0, and in part by the Coordenação de Aperfeiçoamento de Nivel Superior
(CAPES) - finance code 001.

c© Springer Nature Switzerland AG 2019
G. Kern-Isberner and Z. Ognjanović (Eds.): ECSQARU 2019, LNAI 11726, pp. 324–335, 2019.
https://doi.org/10.1007/978-3-030-29765-7_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29765-7_27&domain=pdf
https://doi.org/10.1007/978-3-030-29765-7_27

Explaining Completions by Embeddings of Knowledge Graphs 325

the capital of France?”. Suppose the chatbot uses a KG containing countries and
cities and the relation is capital of, but the triple “Paris, is capital of, France”
is not in the KG. And suppose chatbot returns YES: why is it? An acceptable
reason might be that another triple shows that Paris is a capital, and Paris as
located in France. Another possible explanation to the YES-answer would be one
focusing on properties of the embedding itself: we might learn that every time we
have a city and a country that map into vectors aligned in some particular direc-
tion, the former is the capital of the latter—and that this is happening with Paris
and France. Note that the purpose of the latter explanation is to understand the
behavior of the embedding when answering a particular question. Both expla-
nations require insights that are more sophisticated than existing techniques to
explain classifiers based on detecting which features are most relevant [13,20],
as indicating that a particular dimension of an embedding strongly affects the
decision does not, in itself, provides any clue as to what the embedding is doing.

In previous work [10], we proposed a framework that can produce expla-
nations for KG completion tasks performed by any embedding model (model-
agnostic). In essence, it works by mining significant paths in the KG to build
a feature matrix from which explanations are extracted through logistic regres-
sion. We present here novel insights and refinements that significantly increase
the fidelity of explanations. We start by providing in the next section some
background knowledge about KBs and KGs, as well as a brief description of
KG completion, graph features and latent features. We then summarize a few
notions about interpretability and explanations and present our approach. Later
we describe experiments and results and then close the paper with a discussion
of possible future work.

2 Background

In this section, we provide a short review of the required concepts about knowl-
edge graphs and knowledge graph completion.

2.1 Knowledge Graphs and Their Completion Tasks

Several large knowledge bases have been created to store information in triples of
the form 〈entity, predicate, entity〉 (loosely following the RDF framework [23]).
One may use also head for the subject, relation for the predicate, and tail for
the object. For instance, information about the religion of the king Francis II of
the Two Sicilies would be represented as a triple 〈Francis II of the Two Sicilies,
Religion, Catholic〉. A set of triples can naturally be depicted as a directed acyclic
graph, with an edge from the head to the tail of a triple.

Large KBs, generally built by extracting facts from unstructured text, suffer
from incorrect/incomplete information. A fundamental task that involves KGs
is link prediction. This is the task of, given a specific entity and a relation,
finding a matching entity. For instance, for a given head and relation, to predict
the tail 〈eh, r, ?〉, or, given a tail and a relation, to predict the matching head

326 A. Ruschel et al.

〈?, r, et〉. One may be interested instead in finding a relation between two entities
〈eh, ?, et〉, a challenge sometimes called relation prediction. Another task is, given
a triple 〈eh, r, et〉 not previously seen on the KG, to evaluate whether this triple is
true or false. This is referred to as triple classification. Finally, in entity resolution
one must detect the same entity in different bits of information. For instance,
one can find Barak Obama represented as Barak Obama and B. Obama.

Completion problems have been investigated within statistical relational
learning [7,19]. Some useful notation from that literature will be employed in
this paper. Let E = {e1, ..., eN} represent the set of all possible entities and
R = {r1, ..., rM} represent the set of all possible relations in a KG. A possible
triple is represented by xh,r,t = 〈eh, r, et〉, where eh, r and et stand for head, rela-
tion and tail, respectively. Note that we use the open world assumption in this
paper, meaning that facts not present in the KG are only considered unknown.
We denote the set of all possible triples (or facts) in G by T = E × R × E .

We now contrast two approaches to KG completion: graph feature models
and embedding models.

2.2 Graph Feature Models

Graph feature models aim to perform KG completion by observing characteris-
tics of the graph to infer new facts, often by resorting to rules or similar symbolic
manipulation [19].

With the PRA algorithm [11], Lao and Cohen suggested that triples can
be predicted by a feature matrix constructed with random walks of bounded
length in a KG. Based on PRA, Gardner et al. [6] proposed the Subgraph Feature
Extraction (SFE) algorithm that we now summarize.

The idea is to focus on a relation r at a time. Denote by D+ the triples that
have r as relation, to emphasize that these are “positive” triples. Note that D+

depends on the particular r, but we simplify notation by not explicitly referring
to r. To train the model, a set of “negative” triples D− is built by corrupting
positive triples in the KG by randomly replacing one of its entities (head or
tail) [25]. For a generic triple 〈eh, r, et〉 we take a path (a sequence of edges) π
from eh to et with at most L edges; each edge in a path corresponds to a relation
or the inverse of a relation. A triple is then associated with the set of all path
patterns connecting its head to tail. In fact, not all possible paths from head to
tail are generated; the SFE algorithm runs random walks to sample such paths.

Denote by πL(h, r, t) a path type of maximum length L connecting entity
eh to et. The set of all encountered paths πL(h, r, t) between those entities is
represented by ΠL(h, r, t). Denote by zπ a binary variable that indicates existence
or not of a given path π. The feature vector extracted for a given triple is
represented by φSFE

hrt = [zπ : π ∈ ΠL(h, r, t)]. For a given relation r, using the
latter expression, the SFE algorithm constructs a feature matrix combining the
feature vectors φSFE

hrt extracted for each training example 〈eh, r, et〉 ∈ {D+∪D−}.
This feature matrix can be used as input to any classifier; if one chooses a
logistic regressor, a parameter matrix wr is then obtained for the relation r.

Explaining Completions by Embeddings of Knowledge Graphs 327

We then calculate the probability of existence of the triple 〈ea, r, eb〉 /∈ D+ with
fSFE

abc := wT
r φSFE

abc .
To extract paths, the SFE algorithm builds subgraphs departing from each

entity eh and et with k steps. If two subgraphs Gh and Gt contain paths πh,i

and πt,i departing from each entity and arriving at some intermediate node i,
then a path type πh,i ∪ πi,t is stored in the feature vector. Gardner et al. [6]
adopted random walks for the SFE algorithm but also proposed to construct the
subgraphs via a breadth-first search (BFS), to increase the number of extracted
features. To keep the search computationally tractable during BFS in large KGs,
they proposed to skip the expansion of nodes with a high out-degree (the number
of incoming/outcoming edges). So if a path departing from eh reaches a node with
degree higher than a given number (a parameter of the model), that node will
not be expanded in further steps, but it will still be considered as an intermediate
node i that can later be merged to the subgraph departing from et. This strategy
significantly increases the number of extracted features.

2.3 Embedding Models

Latent feature models map semantically rich entities and relations into real-
valued vectors. The mappings are referred to as embeddings. The state-of-the-
art in KG tasks uses this idea because operations and gradients can be easily
run in numerical spaces. Usually, an embedding model represents entities as
vectors of an arbitrary dimension and relations as operations within the same
vector space. The symbolic data is then manipulated through numeric opera-
tions over those vectors. The “plausibility” of a triple xh,r,t is represented by a
scoring function f(xh,r,t | Θ) [25], where Θ represents the set of parameters of
the model. Basically, there are two major families of embeddings: the first one,
called translational distance models, focus in distance-base scoring functions like
TransE and its extensions [17,25]. The second is formed of semantic matching
models, that rely on scoring functions that measure semantic similarity, being
ANALOGY and RESCAL examples of this family [17,25].

Although the interpretability techniques we propose in this paper are agnostic
to any particular embedding, we will focus on TransE, a very popular embedding
model proposed by Bordes et al. [3], inspired by Word2Vec [14]. In TransE,
entities and relations are represented by vectors of an arbitrary dimension, and
relations are translations within the vector space. A triple 〈eh, r, et〉 is deemed
true when eh+r = et (or rather, when this equality is approximately true within
some threshold). The various vectors are obtained by optimization, taking into
account all the information in the KG of interest. In short, a vector representation
of entities and relations is learned so as to minimize the loss function ||eh+r−et ||
for all facts in the knowledge base.

3 Explaining Embeddings

Currently, embeddings offer the most accurate way to complete KGs, but they
are difficult to understand as they strip the underlying KG of its semantic con-

328 A. Ruschel et al.

tent. On the other hand, graph feature models capture some of the structure of
the KG, thus offering decisions that can be related to semantic properties but
that are less accurate than the ones produced by embeddings. Thus one natu-
rally asks whether it is possible to automatically explain completions produced
by embeddings, perhaps using the symbolic features of the KG as a source of
semantic guidance. This is our strategy in this paper.

First, a word on “Explainable AI”, a topic that has received significant atten-
tion. Even though there has been work on explaining neural networks since at
least the nineties [1,4], the recent emergence of very complex classifiers, for
instance, ones based on very deep neural networks or very wide random forests,
has led to many insights concerning the interpretation of automated decisions
by classifiers [8]. It should be noted that the notion of “interpretability” is not a
simple one [12]; it is certainly not an absolute notion as it depends on the target
customer. A classifier can be interpreted through mathematical equations if the
customer is a data scientist, but it should be explained in a textual manner if the
customer is a lawyer in the auditing department. In any practical scenario, one
may have “degrees” of interpretability depending on the understanding of causes
for the prediction at hand [15]. Also, the interpretation of a model is related to
the trust assigned by the user to the model; it is hard to trust a decision that
cannot be adequately explained. Another perspective is this: when explaining
a prediction, do we want to explain it “absolutely” in the sense that we want
to justify why it makes sense, or do we want to explain is “relatively” to the
model, focusing on the reasons why the model made the decision even if they
are not logically perfect? The former seems useful in all circumstances, but the
latter can be even more critical when the intended user is a data scientist try-
ing to figure out the behavior of a classifier, or an auditing specialist trying to
determine whether a classifier is biased or not. Simple metrics like accuracy are
of no help when interpretability is needed [5]; in fact, there is a natural tension
between accuracy and interpretability: more accuracy in the presence of large
datasets tends to require more complex models that lead to less interpretable
decisions.

There are two distinct basic approaches to interpreting classifiers. First,
decompositional approaches extract rules and explanations by taking into
account the specific structure of the classifier of interest [1]. Second, pedagog-
ical or agnostic approaches consider the classifier as a black-box and implement
a simpler classifier to mimic the outputs from the complex one and also provide
explanations about the outputs. In this paper, we focus on agnostic techniques
as we wish to provide tools that can be useful for a variety of embedding frame-
works.

Interpretations are often generated by detecting which features are most
important, through various sensitivity analyses, or perhaps by detecting which
data points are most influential [24].

Alas, such approaches cannot work in interpreting embeddings. Indeed,
embeddings turn a semantically rich input into numeric vectors, and one cannot
operate in the vector space that is actually used in classification. The transfor-

Explaining Completions by Embeddings of Knowledge Graphs 329

Henry the Lion Catholic

Person X

religion

children

parent

re
lig
ion

Fig. 1. Example produced from FB13. Entities of interest are in blue; dashed edge is
assigned by TransE (other edges belong to FB13). (Color figure online)

mation from semantic entities to vectors is indeed a crucial part of the whole
model, and should also be explained.

Our idea is to consider the embedding model we are trying to explain as a
black-box and to implement an interpretable classifier around it, by extracting
features (path patterns) from the original graph, using the labels predicted by
the embedding. This interpretable classifier is then used to produced symbolic
explanations, in the form of weighted Horn clauses, that are regarded as easily
interpretable [19]. The result is a set of symbolic explanations obtained by graph
features for each completion produced by the embedding. We pursued this basic
idea in a previous publication [10], but our previous proposals had rather low
fidelity. Here fidelity refers to the fraction of completions where the extracted
graph feature model agrees with the original embedding. Of course one should
aim at 100% fidelity when interpreting embeddings: there is no point in hiring
an “interpreter” that may provide reasons for decisions that were not made.

The contribution of this paper is to present a framework able to produce
explanations that correctly mimic the embedding classifier for every prediction.
Before we plunge into a description of our contributions, it is worth considering a
pair of examples generated by our implementation and depicted in Figs. 1 and 2.
These examples were generated with data from two popular KGs, namely FB13
[2,21] and NELL186 [9,16]. Each explanation consists of a subgraph containing
entities in the KGs; in some cases the specific entity is irrelevant (“Person X”,
and so on). However, a symbolic explanation can be easily produced: for instance,
we see that Henry the Lion is considered catholic by TransE in the FB13 dataset
for a simple reason: his child is catholic (a fact that is in FB13). Similarly, Fig. 2
describes why TransE determines UIC Flames to play in the Ice Hockey league
using data in NELL186.

We now describe our method in detail; to do so, in this paragraph, we review
the XKE-TRUE algorithm by Gusmão et al. [10]. Consider a KG G with T =
E×R×E representing the set of all possible triples of this KG. Denote by g : T →
{0, 1} the function of the embedding black-box classifier. Define ΠG as the set of
all possible paths connecting two entities, and P (ΠG) its power set. The feature
extraction function performed by the SFE algorithm for a given triple xh,r,t ∈ T ,
and for the given graph G, is represented by SFE : T → P (ΠG). The result of
applying the SFE algorithm to a triple xh,r,t is denoted by Πh,r,t|G ∈ P (ΠG).

330 A. Ruschel et al.

UIC Flames Ice Hockey

Team XLeague X

plays sport

plays in league

plays in league

plays sport

Fig. 2. Example extracted from NELL186. Entities of interest are in blue; the dashed
edge is assigned by TransE (other edges belong to NELL186). The explanation for the
fact that the team UIC Flames plays Ice Hockey is the fact that they play in a league,
and another team that also plays in the same league also plays Ice Hockey. (Color
figure online)

Then XKE-TRUE builds an auxiliary training set

D = {(SFE(xh,r,t | G), g(xh,r,t)) | xh,r,t ∈ D} (1)

and trains a interpretable classifier, in our case a logistic regressor, g′′ : P (ΠG) →
{0, 1} using D, from which explanations are drawn in the form of weighted Horn
clauses, where each rule (feature) is a path type extracted from G, preceded by
a weight assigned by the logistic regressor.

Even though the XKE-TRUE algorithm just outlined works reasonably, it
has a severe drawback: its fidelity is far from 100%, thus making it fail to provide
explanations in many cases. We now present two enhancements to the original
XKE-TRUE to improve its fidelity. The first one allows SFE to extract more fea-
tures from the KG, leading to a substantial increase in fidelity, while the second
deals with the case where the interpretable classifier contradicts an embedding
prediction.

3.1 Modified SFE

We have implemented a new version of the SFE algorithm, following the same
principles proposed by Gardner et al. [6]. Gardner’s SFE implementation with
BFS makes use of a parameter of the model that specifies the maximum node
out-degree, and nodes with out-degree above that value will not be expanded.
In our BFS implementation, starting nodes with out-degree higher than the
maximum value will be expanded only one step away. This single step turned
out to be very useful to build many more paths sequences to be used as features.

3.2 XKE-e

Despite the modified SFE algorithm described above, for a reasonable amount of
training examples, BFS was not able to find any feature in the KG simply because
there was no path of length L connecting the triples entities. This hinders the

Explaining Completions by Embeddings of Knowledge Graphs 331

fidelity of the resulting logistic regressor. One way to overcome this issue would
be to increase L and find paths of greater length, but in large KGs, this would be
computationally very expensive. Instead, we propose to leverage the knowledge
obtained by applying SFE and logistic regression: for the triples with inconsistent
prediction between the logistic regression and the embedding, we build new paths
(using the embedding for KG completion) connecting the entities using the most
critical paths according to the weights assigned by the logistic regression.

Let us denote by D0 the subset of D in which the SFE function applied to
the triple resulted in an empty set Πh,r,t|G = ∅. For each triple xh,r,t ∈ D0 we
get the active rules wc of the trained logistic regression and construct this path
using g(·), following the algorithm below:

Algorithm 1.1 XKE-e
1: procedure BUILD-EXTENDED-SET(g, G, xh,r,t)
2: Π̂ ← {} � Set of path types for the triple
3: ĝ ← {} � Set of new found facts

4: for all πh,r,t ∈ Π
(w �=0)

h,r,t|G do
5: for each edge ∈ πh,r,t do
6: if g(πi,j,k) = 1 then � If edge holds
7: ĝ ← πi,j,k ∪ ĝ
8: if πh,r,t = TRUE then � If path holds
9: Π̂ ← πh,r,t

⋃
Π̂

return Π̂, ĝ

10: procedure XKE-E
11: Πh,r,t|G ← SFE(xh,r,t | G)
12: for all xh,r,t ∈ D0 do
13: Π̂, ĝ ← BUILD-EXTENDED-SET(g, G, xh,r,t)
14: Πh,r,t|G ← Π̂
15: G ← G ∪ ĝ

16: Using D, train an interpretable classifier g′ : P (ΠG) ← {0, 1}
17: Draw explanations from g’ in the form of Horn clauses

4 Experiments

Here we present the results obtained with our novel approach, comparing them
with results obtained by Gusmão et al. [10]. We will evaluate them according to
the following metrics:

– Accuracy: ratio of correct predictions by the logistic regressor (logit);
– Fidelity: ratio of prediction matches between logit and embedding;
– F1: the classical definition, obtained for accuracy and fidelity;
– Average # of features per example: is the average number of features

extracted by SFE per example in the test set;
– % of Examples with # of features > 0: represents the proportion of

cases in the test set with at least one feature extracted by SFE;

332 A. Ruschel et al.

Table 1. Results (micro-average) for XKE-TRUE/TransE. Results marked with * were
extracted from Gusmão et al. [10]. Results highlighted in bold are the best for each
dataset.

Dataset FB13 NELL186

Embedding accuracy (%) 82.55 86.40

Maximum path length (SFE) 4* 4 6 4* 4

Expand initial node (SFE) No Yes Yes No Yes

Maximum node out-degree (SFE) 100 100 100 100 unl

Avg # of features per example 2.91 4.15 55.89 70.66 78.39

% Examples with # features > 0 54.73 87.09 91.41 50.01 55.47

Explanation mean rules 2.29 3.60 18.86 105.30 102.06

Explanation mean body rule length 3.09 3.01 4.62 3.86 3.86

Fidelity (%) 73.26 75.54 83.04 86.55 88.59

Accuracy (%) 73.43 75.49 79.98 89.10 92.33

F1 Fidelity (%) 76.66 76.24 80.47 83.19 86.53

F1 Accuracy (%) 77.35 77.25 77.69 86.89 91.40

For interpretability, we consider the following metrics:

– Explanation Mean # of Rules: the average number of rules per example
that the logistic regressor assigned a weight different than zero;

– Explanation Mean Body Rule Length: the average number of relations
forming active rules with weight different than zero assigned by the logistic
regressor.

Below we describe all model parameters used in our experiments. To fairly
compare each SFE strategy, we used the same embeddings trained by Gusmão
et al. [10] as proposed by [18]; negative examples were generated via Bernoulli
distribution at a 1–1 rate. Model training was limited to 1,000 epochs, split-
ted into 100 mini-batches and using SGD with Adagrad optimizer. The best
model accuracy was obtained with a learning rate η = 1, �2 norm, margin
γ = 1 and embedding dimension k = 100 for FB13 and k = 50 for NELL.
For the feature extraction with our implementation of the SFE algorithm, we
now describe the parameters. The logistic regressor for each relation was trained
using SGD to minimize the log loss with elastic net regularization and a grid
search was run to find the best fidelity using the following parameters: η = 1
regularization ratio γ = {0.1, 0.7, 0.7, 0.9, 0.95, 0.99, 1.0}, regularization weight
α = {0.1, 0.001, 0.0001} and stopping criteria ε = 0.001; class weights were
inversely proportional to their frequency to properly balance classes.

We can see from Table 1 that relaxing the parameters of the feature extraction
deployed by the SFE algorithm helped to increase the number of features; more
importantly, this increase led to an improvement in the fidelity results for both
datasets. We were able to generate a scenery using paths of length 6 with FB13,

Explaining Completions by Embeddings of Knowledge Graphs 333

which turned out to provide the highest amount of examples with at least one
feature, and also the best fidelity in mimicking the embeddings predictions.

For the NELL186 dataset, we found the same positive effect, mainly because
we were able to run tests with unlimited out-degree. We can see here that the
accuracy of the interpretable model was better than the accuracy of the embed-
ding model itself, indicating that one could use SFE+logistic regression as a
primary tool for KG completion, without the use of the embedding.

As for the interpretability metrics, we saw no significant changes, except for
the FB13 scenery with paths of maximum size 6, where the number of active
rules per example exploded. In contrast, the explanation mean body rule length
only grew from 3 to 4.63, which still can be regarded as easily interpretable.

Table 2. Example of explanation generated by XKE-TRUE, extracted from. [10].

Head Henry the Lion

Relation Religion

Tail Catholic

Reason #1 (0.649) parent−1, religion

Reason #2 (0.500) children, religion

Bias (0.681)

XKE 0.862

Embedding 1

Table 2 brings the same example from Fig. 1, now showing the active rules
obtained by the logistic regressor with its weights, explaining the prediction of
the embedding. The intuition behind this explanation is that, by applying the
SFE algorithm followed by a logistic regression, XKE-e generalized this fact from
the KG attributing a weight for that reason. Indeed it is a much more convincing
explanation than a statement saying that de dimension 43 of the entity vectors
in R

100 was the one that contributed to the correct answer.

5 Conclusion and Future Work

We have presented a novel method to produce explanations for completions
generated by embeddings. We started with the XKE-TRUE algorithm [10]; our
purpose was to increase the fidelity of that algorithm. We did this by introduc-
ing changes to the SFE algorithm and by adding various steps to XKE-TRUE
(Algorithm 1.1). The resulting XKE-e algorithm is a novel scheme that has high
fidelity, and that produces intuitive and plausible explanations, as we have shown
through experiments and through examples.

Despite the advances described here, a significant concern when dealing with
operations in knowledge graphs is the exponential growth of possible paths with

334 A. Ruschel et al.

the number of entities. In future work, we would like to investigate local expla-
nations through the extraction of more expressive paths, as we believe that this
would even further improve the fidelity of our explanations.

References

1. Andrews, R., Diederich, J., Tickle, A.B.: Survey and critique of techniques for
extracting rules from trained artificial neural networks. Knowl.-Based Syst. 8, 373–
389 (1995)

2. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collabora-
tively created graph database for structuring human knowledge. In: ACM SIGMOD
International Conference on Management of Data, pp. 1247–1250 (2008)

3. Bordes, A., Usunier, N., Garćıa-Durán, A., Weston, J.: Translating embeddings
for modeling multi-relational data. In: Advances in Neural Information Processing
Systems, pp. 2787–2795 (2013)

4. Craven, M.W., Shavlik, J.W.: Extracting thee-structured representations of
thained networks. In: Advances in Neural Information Processing Systems, pp.
24–30 (1996)

5. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learn-
ing. Harvard J. Law Technol. 31, 841–887 (2017)

6. Gardner, M., Mitchell, T.: Efficient and expressive knowledge base completion
using subgraph feature extraction. In: Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pp. 1488–1498. Association
for Computational Linguistics (2015)

7. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning (Adaptive
Computation and Machine Learning). The MIT Press, Cambridge (2007)

8. Gunning, D.: Broad Agency Announcement Explainable Artificial Intelligence
(XAI). Technical report (2016)

9. Guo, S., Wang, Q., Wang, B., Wang, L., Guo, L.: Semantically Smooth Knowledge
Graph Embedding. In: Proceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing, pp. 84–94 (2015)

10. Gusmão, A.C., Correia, A.C., De Bona, G., Cozman, F.G.: Interpreting embedding
models of knowledge bases : a pedagogical approach. In: 2018 ICML Workshop on
Human Interpretability in Machine Learning (WHI 2018), pp. 79–86, no. Whi
(2018)

11. Lao, N., Cohen, W.W.: Relational retrieval using a combination of path-
constrained random walks. Mach. Learn. 81(n.1), 53–67 (2010)

12. Lipton, Z.C.: The mythos of model interpretability. In: ICML Workshop on Human
Interpretability in Machine Learning, pp. 96–100 (2016)

13. Lundberg, S.M., Allen, P.G., Lee, S.I.: A unified approach to interpreting model
predictions. In: Advances in Neural Information Processing Systems, pp. 4765–4774
(2017)

14. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. CoRR abs/1301.3, 1–12 (2013)

15. Miller, T.: Explanation in artificial intelligence: insights from the social sciences.
Artif. Intell. 267 (2017)

16. Mitchell, T., et al.: Never-ending learning. Commun. ACM 61(1), 2302–2310
(2015)

Explaining Completions by Embeddings of Knowledge Graphs 335

17. Nguyen, D.Q.: An overview of embedding models of entities and relationships for
knowledge base completion. CoRR abs/1703.0 (2017)

18. Nguyen, D.Q., Sirts, K., Qu, L., Johnson, M.: Neighborhood mixture model for
knowledge base completion. In: Proceedings of the 20th SIGNLL Conference on
Computational Natural Language Learning, Berlin, Germany, pp. 40–50 (2016)

19. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine
learning for knowledge graphs. IEEE 104, 11–33 (2015)

20. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?”: explaining the
predictions of any classifier. In: 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

21. Socher, R., Chen, D., Manning, C.D., Ng, A.Y.: Reasoning with neural tensor net-
works for knowledge base completion. In: Neural Information Processing Systems
(2003), pp. 926–934 (2013)

22. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge
unifying WordNet and Wikipedia. In: WWW 2007 (2007)

23. W3: RDF 1.1 Concepts and Abstract Syntax. https://www.w3.org/TR/2014/
REC-rdf11-concepts-20140225/

24. Wachter, S., Mittelstadt, B., Russell, C.: Couterfactual explanations without open-
ing the black-box: automated decisions and the GDPR. Harvard J. Law Technol.
31, 841 (2017)

25. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding : a survey of
approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743
(2017)

https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

	Explaining Completions Produced by Embeddings of Knowledge Graphs
	1 Introduction
	2 Background
	2.1 Knowledge Graphs and Their Completion Tasks
	2.2 Graph Feature Models
	2.3 Embedding Models

	3 Explaining Embeddings
	3.1 Modified SFE
	3.2 XKE-e

	4 Experiments
	5 Conclusion and Future Work
	References

