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Knowledge Bases (KBs): sets of triples

〈 Jane , child_of, Mom 〉
〈 John , child_of, Mom 〉
〈 Patti , child_of, Mom 〉
〈 Mom , born_in, Miami 〉
〈 Jane , born_in, Miami 〉
〈 John , born_in, Miami 〉

(Example adapted from [1])

Used in many applications!
I Natural language processing (NLP)
I Semantic web search

But often incomplete...
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Knowledge Base Completion

〈 Jane , child_of, Mom 〉
〈 John , child_of, Mom 〉
〈 Patti , child_of, Mom 〉
〈 Mom , born_in, Miami 〉
〈 Jane , born_in, Miami 〉
〈 John , born_in, Miami 〉
〈 Patti , ? , Miami 〉
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Knowledge Base Completion

Figure adapted from [1].

Interpreting Embedding Models of Knowledge Bases: Model Agnostic Approaches 5



Introduction & Background Interpreting Embedding Models of KBs Experiments Conclusion

Embedding Models for KB Completion

Embedding models map entities
and relations into vectors.

I Achieve state-of-the-art results
and are scalable;

I But are poorly interpretable.

Embeddings turn a semantically
rich input into numeric
representations where each
dimension bears little meaning.
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Interpreting Embedding Models of KBs

In this work we propose methods to
interpret embedding models of KBs.
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Interpreting Embedding Models of KBs

I See the embedding model as a
black box;

I Learn an interpretable model
from inputs and outputs.

Model agnostic!
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Interpreting Embedding Models of KBs

We propose two methods:

XKE-PRED
Explaining knowledge embedding models
with predicted features

XKE-TRUE
Explaining knowledge embedding models
with ground truth features
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XKE-TRUE
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Subgraph Feature Extraction

Subgraph Feature Extraction (SFE):
I Binary features;
I Each feature indicates the existence of a path π

(a sequence of edges) between two entities;

Advantages:
I Features can be understood as bodies of weighted rules [2];
I Usually regarded as “easily interpretable”;
I Can be used with any classification model.
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Subgraph Feature Extraction

The only feature with value 1 between Patti and Miami is the
path π = (child_of, born_in).

Figure adapted from [1].
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XKE-TRUE

More formally:

XKE-TRUE
I Construct a set of examples D of arbitrary size n in which, for

each triple xh,r,t = 〈eh, rr, et〉,
I Features F (xh,r,t | G) are extracted using SFE from a ground

truth knowledge graph G;
I The label corresponds to the embedding model’s prediction.

D = {(F (xh,r,t | G), g(xh,r,t))}n

I Train an interpretable classifier (logit) using D;
I Draw explanations from the interpretable classifier.
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Experiments & Results

Dataset FB13 NELL186
XKE variant TRUE PRED3 PRED5 PRED7 TRUE PRED3 PRED5 PRED7

Embedding Accuracy 82.55 86.40

# Positive triples in G (XKE-TRUE) or Ĝ (XKE-PRED) 322k 830k 1,668k 2,658k 36k 196k 524k 987k
Ĝ positive over predicted ratio - 0.286 0.207 0.168 - 0.604 0.581 0.558
# Features per example 2.91 0.91 1.34 1.79 70.66 159.54 249.86 337.41
% Examples with # features > 0 54.73 33.83 37.88 41.81 50.01 39.39 45.57 51.87

Explanation Mean # Rules (for explanations with size > 0) 2.29 2.19 2.70 2.57 105.30 51.33 159.02 158.87
Explanation Mean Rule Length 3.09 3.00 2.87 2.82 3.86 3.78 3.89 3.89

Fidelity 73.26 66.65 74.36 69.99 86.55 77.00 74.94 75.64
Fidelity (filtered for examples with # features > 0) 80.52 84.30 85.74 83.28 87.02 85.00 83.07 84.47
Fidelity (weighted by the # features) 75.21 82.67 84.58 84.80 85.66 88.09 86.24 88.22
Accuracy 73.43 64.58 71.78 68.11 89.10 75.79 76.18 76.44
Accuracy (filtered for examples with # features > 0) 80.78 81.00 82.02 80.34 91.19 84.08 84.30 85.11
Accuracy (weighted by the # features) 71.68 78.42 81.28 82.19 82.12 86.56 89.11 89.41
F1 (Fidelity) 76.66 50.11 71.14 61.13 83.19 61.41 68.07 68.03
F1 (Accuracy) 77.35 49.07 69.16 59.69 86.89 62.66 71.14 70.68
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ID #1 (XKE-TRUE)

Triple 〈 francis_ii_of_the_two_sicilies , religion, roman_catholic_church 〉

Reason #1 (2.456) parents,religion
Reason #2 (1.946) spouse−1,religion
Reason #3 (1.913) spouse,religion
Bias (1.017)

XKE 0.999346
Embedding 1
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Conclusion

I We presented techniques to explain KB embeddings models,
where features can be understood as weighted Horn clauses.

I Future work: fidelity is a point for improvement.

I We expect this initial work to serve as a basis of comparison
and inspiration for the development of novel methods for
explaining embedding models in KB completion.
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Code available: https://github.com/arthurcgusmao/xke

Thank you!
Questions?
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